Defect-Rich Dopant-Free ZrO₂ Nanoclusters and Their Size-Dependent Ferromagnetism

Xiaoyi Guan, Saurabh Srivastava, Joseph Palathinkal Thomas, Nina F. Heinig, Jung-Soo Kang, Md Anisur Rahman, and Kam Tong Leung*

ABSTRACT: As an intermediate form of matter between a single atom or molecule and the bulk, nanoclusters (NCs) provide novel properties because of their high surface area-to-volume ratios and distinct physical and electronic structures. These ultrasmall NCs offer a new approach to advance charge–spin manipulation for novel devices, including spintronics and magnetic tunneling junctions. Here, we deposit monosized ZrO₂ NCs over a large area by using gas-phase aggregation followed by in situ size selection by a quadrupole mass filter. These size-specific NCs exhibit sub-oxide photoemission features at binding energies that are dependent on the cluster size (from 3 to 9 nm), which are attributed to different oxygen vacancy defect states. These dopant-free ZrO₂ NCs also show strongly size-dependent ferromagnetism, which provides distinct advantages in solubility and homogeneity of magnetism when compared to traditional dilute magnetic semiconductors. A defect-band hybridization-induced magnetic polaron model is proposed to explain the origin of this size-dependent ferromagnetism. This work demonstrates a new protocol of magnetization manipulation by size control and promises potential applications based on these defect-rich size-selected NCs.

KEYWORDS: ZrO₂ nanoclusters, gas-phase aggregation, dopant-free ferromagnetic semiconductors, size-dependent ferromagnetism

INTRODUCTION

Nanoclusters (NCs) are defined as small aggregations of atoms or molecules generally less than 10 nm in size,1–3 and they are considered to be the link between free atoms or molecules and the bulk. In this interesting size regime, individual states in the electronic structure have not fully merged into bands and remain intact as multiple distinct states. NCs can also be regarded as giant molecules, and they hold the key to understanding the evolution of electronic structures and other properties from single atoms or molecules to the bulk phase with increasing size of the NCs. Because of a significantly higher surface area-to-volume ratio (or specific surface area) compared to their bulk phase, NCs have also attracted a lot of attention in surface-driven research.11 The high air stability of noble metals such as Au, Ag, and Pt makes their NCs especially attractive to such applications as catalysis,5 fuel cells,5 and biosensing.6 The study of transition-metal/metal oxide NCs has also become popular in the past two decades. In addition to the different band structures from the bulk phase, these NCs exhibit notable defects in various oxidation states, which could become dominant and lead to mid-gap states.2,13,20 These semiconducting oxide NCs with mid-gap states and structures consisting of different ordered arrays and assemblies are strong candidates for applications in light illumination7 and magnetic sensors.8 Just as important is the band gap manipulation in Si for microelectronics and in GaAs for photonics, the understanding and control of defects with size-specific NCs over a wide size range are essential to achieve viable applications based on these novel monosized semiconducting oxide NCs.9

To date, there are a number of methods to synthesize transition-metal NCs, which include hydrothermal method,1 self-assembly,7 and gas-phase aggregation.2,13,15 With a better understanding and continued advancement of the cluster beam technique,11 gas-phase aggregation along with size-selective mass filtering technique has become one of the most promising methods to synthesize NCs. Based on a well-developed magnetron sputtering system with an adjustable condensation zone, this technique enables fine-tuning of the cluster size with highly reproducible results. By coupling with a quadrupole mass filter, the system can produce a broad monosized NC beam over a large deposition area.2,13,16,17 As multiple targets can be placed into the magnetron sputtering system to generate plasma from these targets simultaneously or combinatorially, it is also possible to synthesize a variety of alloy NCs for a wide range of research and technological applications.18

Received: August 19, 2020
Accepted: September 29, 2020
Published: October 16, 2020
Recently, ZrO₂ has become an attractive material alternative to TiO₂ for applications such as photoelectrochemical water splitting²¹ and fuel cells.²³ Bulk ZrO₂ does not have any magnetic states, whereas an undoped ZrO₂ film obtained by pulsed electron beam deposition in a partial oxygen environment has been found to have a tetragonal structure, showing ferromagnetic properties at room temperature.²² Similarly, other undoped transition-metal oxides (TiO₂,²³ and HfO₂,²⁴) with surprising ferromagnetic properties have also been reported. Recently, we showed that dopant-free, defect-rich ZrO₂ nanowire and nanobrick films exhibit strong ferromagnetic properties at room temperature.¹² Unlike the conventional dilute magnetic semiconductors (DMSs) such as Mn-doped GaAs or InAs, these undoped ferromagnetic transition-metal oxide nanostructured films have a significantly higher Curie temperature (T_C) than those of conventional DMSs with T_C < 200 K.²⁷ For materials with promising magnetic applications at room temperature, their Curie temperature should be greater than 500 K.²⁸ Although some transparent oxide DMSs, such as Cr-doped In₂O₃ films²⁹ and Co-doped TiO₂ film,³¹ have generally high T_C and could therefore serve as a viable material alternative for room-temperature spin-based electronic applications, the solubility of the dopants remains one of the biggest challenges that limit their potential application. Furthermore, the nonuniform distribution of the dopants caused by their natural tendency to form aggregates leads to inhomogeneous magnetism within the material.³²,³³ As defects in crystalline structures appear to play an important role in dopant-free ferromagnetic oxides,³⁴,³⁵ these oxides could have the advantage of uniform magnetization. With the origin of these ferromagnetic properties remaining under debate, the study of defects and the important role that they play in these oxides is therefore fundamentally important to the development of future magnetic devices and spin-based electronics.

Here, we produce size-specific ZrO₂ NCs over the 2–16 nm size regime. Size-tuning is achieved in the gas-phase aggregation technique by using a magnetron sputtering source coupled to a quadrupole mass filter, and the NCs so produced can be deposited uniformly over a large area (2 in. dia.). The as-deposited monosized ZrO₂ NCs (3, 5, 7, and 9 nm in diameter) are oxygen-deficient, and these oxygen-vacancy defects introduce strongly size-dependent ferromagnetic hysteresis. To account for the origin of this ferromagnetism, we propose an improved magnetic polaron generation model involving defect-band hybridization. In addition to this size-dependent ferromagnetism, the high dielectric constant of ZrO₂ also attracts a lot of interest for use as a gate oxide in high electron mobility transistors.³⁶,³⁷ Biocompatibility and excellent surface charge properties further make ZrO₂ NCs a strong material candidate for nanosensors.³⁸

MATERIALS AND METHODS

ZrO₂ NCs are directly deposited on hydrogen-terminated Si(100) substrates by using a magnetron sputter-based NC generation system (Nanogen S0, Mantis Deposition Ltd.).³⁹,⁴₀ The silicon substrates are cleaned by high-performance liquid chromatography-grade acetone and isopropyl alcohol, each with 10 min of ultrasonication, followed by 5 min of etching in hydrofluoric acid (2 vol %) to remove the native oxide layer, thoroughly rinsed in filtered ultrapure high-resistivity water after each step, and finally dried under a nitrogen stream. The resulting H-terminated Si (H-Si) substrates are then transferred to a high vacuum chamber with a base pressure of 1.5 × 10⁻⁸ mbar. The Nanogen source is equipped with three 1 in. dia. DC magnetron sputtering heads, the power output of which can be individually controlled. The zirconium targets (99.9% purity, ACI Alloys) are sputtered by Ar plasma. The sputtered atoms enter a condensation zone (equipped with a cooling jacket), where the atoms collide with one another and aggregate into clusters.⁴¹ The NCs can be transported by diffusion or carried forward by the Ar buffer gas.⁴² As the broad beam containing NCs with a large size distribution is collimated through the condensation aperture, it undergoes mass selection in the quadrupole mass filter region. An appropriate set of AC and DC voltages is applied to the quadrupole mass filter to allow the passage of NCs with the preselected mass-to-charge ratio. The size selection process produces a monosized NC beam up to 10⁶ amu with a 2% deviation.⁴³ As no bias is applied on the substrate, the clusters are deposited on the substrate under soft-landing condition. In the present work, we focus on clusters smaller than 10 nm and investigate the nanosize dependency of their magnetic properties.

The surface morphology of the deposited NC film is characterized by field emission scanning electron microscopy (SEM) with a Zeiss Merlin microscope and an atomic force microscopy (AFM) using a Digital Instruments Dimension 3100 Nanoscope operated in tapping mode. The crystalline structure of individual clusters is determined by transmission electron microscopy (TEM) with a Zeiss Libra 200 MC microscope with a double-corrected Omega filter operated at 200 kV. The TEM specimen is prepared by depositing the clusters directly on a 300 mesh copper grid with a lacey carbon film using the Nanogen source. The crystal structure of the NC film deposited on a Si substrate is measured by glancing-incidence X-ray diffraction in a PANalytical MRD X’pert Pro diffractometer equipped with a Cu Kα source and a parallel X-ray beam setup operated at an incident angle of α = 0.3° over the selected 2θ range. The chemical-state composition of the NC film is characterized by X-ray photoelectron spectroscopy (XPS) using a Thermo-VG Scientific ESCALab 250 microprobe with a monochromatic Al Kα X-ray source (1486.6 eV). The XPS features are fitted by using the CasaXPS software after appropriately removing the Shirley background. To characterize the magnetic properties at different temperatures, the ZrO₂ NCs are deposited onto a 5 × 5 mm² Si substrate to allow the sample to be mounted on a quartz sample holder for superconducting quantum interference device (SQUID) magnetometry in a Quantum Design MPMS SQUID-VSM. After appropriately removing the diamagnetic contribution from the Si substrate and the sample holder to the signal, the magnetization of the ZrO₂ NC film is normalized by mass, as converted by volume estimation using AFM data (without considering the filling factor, shown in Figure S4) and a bulk density of 5.68 g/cm³. Care is taken to prevent magnetic cross-contamination by using only plastic tweezers and quartz sample holders in all our sample preparation and data collection processes.

RESULTS AND DISCUSSION

The formation and growth of ZrO₂ NCs, obtained by using a magnetron sputter-based source and a condensation chamber, involve the following mechanism:

\[
\begin{align*}
M + M + Ar & \rightarrow M_x^m + Ar^+ + e^- \\
M_x^m + M & \rightarrow M_{m+n}^d \quad \text{(seed formation)} \\
M_{m+n}^d + \text{substrate} & \rightarrow M_m^{(ad)} + \text{substrate} + e^- \\
&M_{m}^{(ad)} + \text{substrate} + O_2 & \rightarrow M_m^{(ad)} + \text{substrate} \quad \text{(oxidation)}
\end{align*}
\]

where Ar is the buffer gas, \(M_m^{(ad)}\) (\(m = 2, 3, \ldots, n\)) is a free metal cluster species, \(M_m^{(ad)}\) is a metal cluster adspecies on the...
substrate, and $M_{\text{O}}\text{(ad)}$ is an oxidized cluster adspecies on the substrate. As the free Zr atoms start to form nucleation seeds upon collision with one another and with the buffer gas within a restricted region from the sputter target, the seeds grow into bigger and bigger clusters as more free atoms become attached to the seed surface. Both the aggregation length (AL), defined as the separation between the top of the sputter target and the exit aperture (Figure 1a), and the Ar gas flow could critically affect this cluster formation process. Figure 1b shows that increasing the Ar flow at a fixed AL promotes the growth of clusters with a smaller size. The buffer gas is therefore not only important for generating plasma to sputter the Zr target and for carrying the clusters forward to the deposition chamber and onto the substrate but also crucial for facilitating the seed formation that leads to the cluster beam becoming negatively charged. A higher Ar flow rate promotes the formation of a larger amount of seeds and causes a smaller dwell time for the seeds to pass through the aggregation chamber and therefore reduces the extent of the NC growth for a fixed AL, both of which effectively reduce the overall size of the NCs. On the other hand, increasing the AL for a selected Ar flow would increase the dwell time of the NCs passing through the chamber, therefore promoting a larger mode cluster size and a broader near-Gaussian size distribution (Figure 1c). Figure 1b also shows that increasing the Ar flow from 40 to 80 sccm reduces the cluster diameter at a greater rate for a larger AL than for a smaller AL. As a smaller AL has already limited the dwell time for nucleation, the effect of the Ar flow becomes less prominent. In contrast, the Ar flow for a larger AL appears more effective in changing the dwell time. By optimizing both the Ar flow and the AL, the desired size of the NCs can be tuned from 2 to 10 nm (in diameter), and the smallest NC (of 3 nm in mode size) is obtained for an AL of 10 mm at an Ar flow of 80 sccm. By either passing O_2 into the deposition chamber or exposure to the ambient air atmosphere, the Zr NCs could be easily oxidized during the deposition process or upon removal from the chamber. Further details of tuning the dimensions of the clusters with various parameters are discussed elsewhere.

Figure 1d1—d4 shows the SEM images of the surface morphology of size-selected ZrO$_2$ NC films. The NCs are directly deposited on H–Si substrates for 60 min with appropriately optimized deposition parameters (AL and Ar flow) and with the quadrupole set to filter the selected mass (i.e., the peak position of each size distribution curve). Evidently, the as-deposited NCs are dispersed on the substrate into groups or islands of clusters, and these islands of clusters are spread over the substrate producing a NC film with increasing deposition time. The NCs are found to have a near-spherical shape, and they also appear very similar to one another in size, which confirms that the quadrupole mass filter provides good size selection with a narrow size distribution.

Figure 2 shows the low-magnification TEM images of groups of ZrO$_2$ NCs (with different mode sizes as set by the Nanogen). The center insets depict the narrow size distributions of the NCs produced by the Nanogen, thus demonstrating its excellent size selection. The near-spherical shape of the NCs also indicates that there is no discernible deformation of the ZrO$_2$ NCs deposited under the soft-landing condition. From the high-resolution phase contrast TEM images (Figure 2, top right insets), the ZrO$_2$ NCs show well-defined crystallinity for the NC size of 5 nm or above. The interplanar spacings of the 5 nm (and 9 nm) and 7 nm NCs are found to be 2.95 and 2.59 Å, respectively, which are in good accord with those of the (1 0 1) and (0 0 2) planes of the tetragonal ZrO$_2$ lattice. The degree of crystallinity of the tetragonal ZrO$_2$ NC film is also confirmed by our XRD profiles (Figure S1). On the other hand, the 3 nm NCs appear to be amorphous, likely due to the short dwell time available for the crystalline growth. This is also supported by the corresponding fast Fourier transform (FFT) patterns of the TEM images of individual NCs (Figure 2, bottom right insets), which show a notable contrast between the spot pattern of the crystalline 5 nm NC (Figure 2b) and the ring pattern of the amorphous 3 nm NC (Figure 2a). These amorphous NCs with ultrasmall size could contain a higher density of defects that would likely give rise to stronger magnetic properties. It is of interest to note that for bulk ZrO$_2$ the most stable phase is the monoclinic...
phase, followed by the tetragonal and cubic phases. Because of the difference in the surface free energy of the nanostructure within the sub-10 nm size regime, the tetragonal ZrO$_2$ NCs can be formed and become stable at room temperature.22,38

Figure 3 shows the XPS spectra of the Zr 3d and O 1s regions of the as-deposited ZrO$_2$ NC films. The survey spectra (Figure S2) indicate the presence of Zr, O, C, and Si. It should be noted that the presence of a minute amount of carbon in the form of a carbonaceous layer is often found on samples due to normal handling in air. Evidently, there are no features corresponding to Mn 2p at 638.3 eV, Fe 2p at 706.8 eV, Co 2p at 779.4 eV, and Ni 2p at 852.6 eV, which confirms that the ferromagnetic signals are generated by the ZrO$_2$ NCs and not any magnetic impurities. The predominant Zr 3d$_{5/2}$ feature at 183.4 eV and the prominent O 1s feature at 531 eV (Figure 3) correspond to the Zr$^{4+}$ cation in stoichiometric ZrO$_2$. The residual intensities between the Zr$^{4+}$ and metallic Zr0 peaks can be attributed to oxygen-deficient ZrO$_2$. (Table 1). Evidently, the residual band corresponding to ZrO$_2$ shifts from 181 eV to the binding energy position of metallic Zr (at 178.9 eV) with decreasing intensity as the NC size increases from 9 to 9 nm. Based on the binding energies of Zr$^{4+}$ (179.8 eV), Zr$^{2+}$ (180.9 eV), and Zr$^{3+}$ (182.1 eV), we attribute the ZrO$_2$ band to a combination of these oxidation states, which are used in the fitting (Figure 3).28 More details of the composition of the residual features are given in Table S1 (Supporting Information). For the 3 and 5 nm NCs, the ZrO$_2$ features consist largely of Zr$^{3+}$ and Zr$^{5+}$ contributions. For the larger 7 and 9 nm NCs, the respective Zr$^{3+}$ residual intensities have become extremely low, and the predominant contributions are Zr$^{4+}$ and Zr$^{2+}$. For the O 1s spectra, after removing the SiO$_2$ feature at 532.9 eV, the remaining feature at 533.5 eV can be attributed to oxygen-deficient ZrO$_x$. As the deposition is performed in a low vacuum condition, the aggregated Zr NCs are oxidized in ambient conditions, which could produce nonstoichiometric oxide states.31 While the surface-to-volume ratio increases with decreasing NC size from 9 to 3 nm for an individual NC, the total specific surface area increases with decreasing NC size. As the formation of ZrO$_2$ could be caused by the presence of oxygen vacancies at locations with low coordination (i.e., in the near-surface region) in the NCs, the smaller NCs are more favorable to introduce oxygen vacancies. As the surface of the NC becomes oxidized with various states, more discernible ferromagnetic properties are expected if the surface is populated with oxygen-deficient sites.

As the substrate has significantly greater mass than the deposited NCs, the main contribution to the sample (NCs +
substrate) during the SQUID magnetometer measurement is expected to be dominated by the silicon substrate. After subtracting the diamagnetic signals from the silicon substrate and quartz sample holder (Figure S3a), we observe a hysteresis loop in the respective magnetization curves of the NC films. In order to perform quantitative analysis of the loop, we minimize

\(a \) and \(b \). This procedure is based on the symmetry of the loop and the use of hyperbolic functions, the details of which are provided in the Supporting Information (Figure S3). The magnetization is normalized by the mass of the NC film, which is estimated from the volume of the NC film (Table 1) obtained from the NC film thickness measurements (Figure S4).

Figure 4a,b shows magnetization as a function of magnetic field (the \(M-H \) curves) of the monosized ZrO\(_2\) NC films, with the three smallest NC sizes (3, 5, and 7 nm), obtained at 5 K and room temperature. Evidently, all the NC films start to reach saturation at 2000 Oe. Although the magnetization curves measured at room temperature appear noisier than those at 5 K, they clearly follow the characteristic ferromagnetic profile (after the respective contributions from the substrate and the sample holder have been appropriately removed). The magnetic saturation (\(M_s \)), remanence (\(M_r \)), and coercivity (\(H_c \)) are calculated from the corresponding fitted \(M-H \) curves and are summarized in Table 1. Among the monosized NCs, the 3 nm ZrO\(_2\) NCs exhibit the strongest \(M_s \) and \(M_r \) both at 5 and 300 K. The \(M_s \) value for the 5 nm NCs (0.54 emu/g at 5 K) is found to decrease significantly to 28% of that of the 3 nm NCs (1.91 emu/g at 5 K), and \(M_s \) continues to decrease as the NC size increases to 7 nm (0.16 emu/g at 5 K). However, the 9 nm NCs start to show bulk-like properties without any ferromagnetism (Figure S3d). The changes in magnetization are likely due to the changes in the defect concentration and in the NC packing density on the substrate. As the NCs are deposited on the substrate under soft-landing conditions, they are expected to be loosely packed and stacked on the substrate without deformation. There is therefore more space among the larger NCs, which reduces their material density. On the other hand, \(H_c \) is found to increase slightly from the 3 nm ZrO\(_2\) NCs (120 Oe at 5 K) to 5 nm (125 Oe) and to 7 nm NCs (162 Oe). For the 9 nm NCs, the nearly linear and noisy magnetization curve (Figure S3d) suggests that these larger NCs start to essentially follow the bulk (paramagnetic) profile. Except for the smaller corresponding values, the trends in \(M_s \) and \(H_c \) observed for the magnetization curves measured at 300 K generally follow those at 5 K with respect to the changes in the NC size, which suggests that there is no phase change between 5 and 300 K. Furthermore, it should be noted that we have also performed postannealing of the as-grown ZrO\(_2\) NCs in O\(_2\) in order to “heal” (or reduce the amount of) the oxygen vacancy defects. These postannealed samples do not exhibit any ferromagnetism, which confirms that the observed ferromagnetism comes from the oxygen vacancies.

To date, there are only a few theoretical studies on magnetic ordering and the origin of magnetic semiconductor oxides. In the bound magnetic polaron (BMP) model, which is highly applicable to materials with transition-metal dopants, magnetic coupling is generated via exchange interaction between the donors and local magnetic ions, resulting in a cloud of polarized spins and the so-called ferromagnetic alignment.\(^{30}\) In a dopant-free semiconductor oxide material, the grain boundary defects that are proposed to correspond to oxygen vacancies have strong effects on their interactions. The magnetic exchange interaction is enhanced by a high concentration of the oxygen vacancy defects overlapping among the BMPs. However, this model could not explain how this ferromagnetism could exist at room temperature or in some other nonferromagnetic materials with a high concentration of oxygen vacancies.\(^{12,41}\) In the charge-transfer ferromagnetism (CTF) model, developed as an extension of the BMP model, the high defect concentration contributes to an impurity band. Electron hopping between the impurity band and the charge reservoir created by the dopants leads to splitting of the spin states.\(^{28,29,39}\) As the ZrO\(_2\) NCs obtained in the present work do not have any dopant, the observed ferromagnetism for the clusters of different sizes is therefore related to oxygen vacancy defects. The presence of oxygen vacancy defects is in good accord with the XPS residual intensities of the Zr 3d feature between 179 and 182 eV and the O 1s feature between 532 and 536 eV attributed to ZrO\(_2\) (Figure S3).

Based on the previous theoretical studies involving the BMP and CTF models and our XPS analysis, we propose a band hybridization model to explain the size-dependent ferromagnetism of the ZrO\(_2\) NCs. Unlike Ti in TiO\(_2\) and Zn in ZnO, the Zr atoms in the ZrO\(_2\) bulk are not easily reduced from Zr\(^{4+}\) to a lower oxidation state (i.e., Zr\(^{3+}\), Zr\(^{2+}\), or Zr\(^{1+}\)).\(^{20}\) However, in the presence of a high electric field or a surface, it is possible for Zr\(^{4+}\) to be reduced to a lower oxidation state.\(^{26,41}\) In a...
recent density functional theory study20,38,41 oxygen vacancies are found to have a lower formation energy in a ZrO$_2$ NC than the bulk ZrO$_2$, which makes the ZrO$_2$ NC more favorable to host oxygen-reducible structures. Because of the presence of these oxygen vacancy defects, the ZrO$_2$ tetragonal phase could become stabilized at room temperature. The oxygen vacancies are more easily formed in a lower-dimensional structure such as the surface of the clusters. There is therefore a higher relative concentration of oxygen vacancy defects (i.e., ZrO$_{\text{vac}}$) in the NC film with smaller NCs because of their higher surface-to-volume ratio (when compared to a uniform film or powders).38,41 In the tetragonal ZrO$_2$ structure, one missing oxygen atom (i.e., an oxygen vacancy defect) could trigger the reduction of one of the nearby Zr$^{4+}$ ions to Zr$^{3+}$, leaving a resonance structure that contains a singly charged oxygen vacancy and a Zr$^{3+}$ ion. The excess 4d electron in the lattice starts to form a magnetic polaron due to the exchange interaction (Figure 4c). As the Zr$^{3+}$ ions become the charge reservoirs as a result of this defect formation, an impurity band arises between the conduction band and valence band. Hybridization between the impurity band and the conduction band causes band-splitting that leads to spin-up and spin-down states, which favors the ferromagnetic ordering (Figure 4d).12,41 As the size of NC increases and approaches the bulk, there are more nearby missing oxygen atoms (i.e., >2 atoms/unit cell), and more Zr$^{3+}$, Zr$^{4+}$, or even Zr0 (metallic) states are introduced. Although there is a higher concentration of defects along with more unpaired d-shell electrons, too close overlapping of the electron wave functions (leading to exchange interaction) could induce antiparallel alignment and therefore give rise to antiferromagnetism. In addition, the excess electrons in Zr$^{3+}$ and Zr0 occupying the orbitals individually may lead to paramagnetic property as well. Hence, when the NC size increases from 3 to 9 nm, the concentration of Zr$^{3+}$ decreases (as revealed by the XPS spectra in Figure 3) and less magnetic polarons are produced, which in turn leads to weaker magnetic saturation. The present model is found to be consistent with the recently reported first-principle calculations on even smaller clusters (<3 nm).41

Our ferromagnetic NCs are novel and unique because they represent one of the rare dopant-free DMS materials. Our ZrO$_2$ NCs only require less than 2000 Oe external field to reach saturation. The sensitivity and saturation (1.8 emu/g) are much higher than most of the magnetic transparent oxide materials, including undoped ZrO$_2$ film (0.18 emu/g),42 Mn-doped ZrO$_2$ thin film (0.02 emu/g),43 and Cu-doped ZnO nanowire film (0.2 emu/g).44 In addition to presenting further insights of the ferromagnetic property of these NCs, our magnetic ZrO$_2$ NCs also promise some potential technological applications. In cancer theranostics, these ultrasmall NCs combined with designer surface chemistries are highly appealing to diagnostic assays and MRI contrast agents.45 Furthermore, as the ferromagnetism of ZrO$_2$ NCs are strongly size-dependent, the magnetization can be manipulated by controlling the size. These magnetic NCs with a high dielectric constant could potentially serve as tunnel junctions in future nanoscale spintronic devices.

CONCLUSIONS

In summary, we have successfully synthesized and deposited dopant-free size-selected ZrO$_2$ NCs of 3, 5, 7, and 9 nm in size on silicon substrates. These monosized NCs exhibit strong size-dependent ferromagnetism. Together with the nature of the nanostructures, the built-in oxygen vacancy defects near the surface of the NCs are found to be responsible for the magnetic properties. Our XPS study further shows that there is a correlation between the magnetization and Zr$^{3+}$ content of the NCs. The present study establishes a strong link between the proposed mechanism involving defect-induced band hybridization and the observed magnetization properties. This work also demonstrates a novel approach to synthesize dopant-free magnetic semiconductors and to manipulate the magnetization by size control. The simplicity of the technique and the room-temperature deposition promise high reproducibility and a wide substrate choice that are attractive to a broad range of applications, such as tunneling junctions and future spintronics.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c14706.

XRD profiles of as-deposited ZrO$_2$ NCs, XPS survey spectra, details of quantitative analysis of magnetization data, AFM height profiles of the ZrO$_2$ NCs, and relative compositions of Zr 3d oxidation states (PDF)

AUTHOR INFORMATION

Corresponding Author

Kam Tong Leung — WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; orcid.org/0000-0002-1879-2806; Email: tong@uwatwaterloo.ca

Authors

Xiaoyi Guan — WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Saurabh Srivastava — WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Joseph Palathinkal Thomas — WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; orcid.org/0000-0001-6455-908X

Nina F. Heinig — WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Jung-Soo Kang — WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Md Anisur Rahman — WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; orcid.org/0000-0002-3194-881X

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.0c14706

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

