Two-Dimensional Self-Assembled Gold Silicide Honeycomb Nanonetwork on Si(111)7×7

Fatemeh R. Rahsepar, Lei Zhang, and K. T. Leung*

WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G, Canada

ABSTRACT: The growth evolution of Au on Si(111)7×7 at room temperature under ultrahigh vacuum conditions is studied by using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Both STM filled-state and empty-state imaging show that on the 7×7 surface two distinct Au layers form one after another, each by connecting patches of adjoining Au clusters, before individual islands start to grow on top. XPS measurements of the same coverages reveal that Au exists as gold silicide in the two interfacial distinct layers and as metallic Au in the islands. The critical thickness of the gold silicide interface region is found to be two monolayers, which marks the transition from layer-by-layer to island growth. These results provide direct observation and chemical-state characterization of Au growth on Si(111)7×7 in the Stranski–Krastanov mode. Of special interest is the formation of the gold silicide honeycomb nanonetwork at 0.76 monolayer coverage, which is made up of six triangular Au clusters (around each corner hole) interconnected to one another at the dimer rows of the Si(111)7×7 substrate. With the corner holes of the 7×7 surface exposed, this new gold silicide nanonetwork, in effect, forms a two-dimensional template of nanopores (∼1 nm in pore size) for molecular trapping application. The gold silicide honeycomb nanonetwork also offers a new conducting phase of fundamental interest to semiconductor device fabrication and to potential applications in biofunctionalization.

INTRODUCTION

As a noble metal, Au is well-known for its stability and inertness even at high temperature. However, Au has been found to readily react with Si, with the first report of an intermixed Au/Si interface dated back to four decades ago.1 This unusual reactivity of Au toward Si is of fundamental interest. Furthermore, the catalytic property of Au in the nanoscale has also attracted a lot of attention because of its many potential technological applications. A large variety of preparation techniques have therefore been employed to grow Au on a Si surface, from single Au adatoms to clusters to nanoparticles to thick films. Growing Au on a clean, single-crystalline Si surface in ultrahigh vacuum is considered to be the best way to study the Au−Si reaction and the extent of this interaction, because complications due to oxide formation and grain boundaries could be minimized. Previous ultrahigh vacuum studies have focused exclusively on either the very early stage of formation of Au/Si interface2 or a large Au coverage on Si.3 Single Au adatoms,4 dimers,5 and clusters with a proposed Au5Si3 structure6 have been observed on Si(111)7×7 at room temperature and lower temperatures by using scanning tunneling microscopy (STM). On the other hand, at a high Au coverage three-dimensional Au8−9 or gold silicide islands have been found by using photoemission10−12 and medium energy ion scattering.13 Along with the formation and location of the gold silicide in the growth stage, the growth mode of Au on Si is also of great interest in the literature. In general, the common growth mode of heteroepitaxial growth of metals on Si surfaces is the Stranski–Krastanov mode.9 In this so-called mixed growth mode, the initial two-dimensional layer-by-layer growth is switched to three-dimensional island growth at a certain critical thickness.14 While the growth mode of Au on Si(111) (with various postannealing temperatures) has been generally accepted to follow the Stranski–Krastanov mode,9 details about the growth evolution particularly near the critical thickness region remain unclear. In spite of the earlier efforts and this seemingly simple metal–semiconductor “benchmark” system, a consistent picture about the formation and location of...
gold silicide in the growth stage of Au on Si has not been reached.10−13,15,16 This important information is of fundamental interest to silicon device fabrication, particularly in areas of metal passivation. For example, the topmost layers of Au film on Si have been reported to be gold silicide,3,13,17 metallic Au,10,18 or Si-rich alloy.19,20 In the case of Au growth on Si(111)7×7 at room temperature, by using a combination of photoemission and ion scattering techniques, Hoshino et al. have reported the growth of two atomic layers (at an Au coverage of 5.2 monolayers) in the form of Au$_3$Si$_2$ on top of a metallic Au layer.13 Even more surprising was their observation that an increase in the Au dosage only led to an increase in the metallic Au layer thickness, with the top Au$_3$Si$_2$ layers remaining unchanged.13 In contrast, according to Kim et al.10 a complete monolayer of metallic Au was formed on the top of a gold silicide interfacial layer. They drew this conclusion from their results obtained by positron-annihilation-induced Auger electron spectroscopy that was sensitive to just the topmost layer, together with conventional Auger electron spectroscopy.

Here, we study the growth evolution of Au on Si(111)7×7 at room temperature under ultrahigh vacuum conditions by correlating our STM images with our XPS spectra for the same coverage over a wide coverage range, from single adatoms to clusters to honeycomb nanonetwork and to islands. In particular, the morphology of Au (i.e., wetting layers vs islands) can be directly inferred from the STM images, while the chemical states of Au with well-defined chemical shifts (i.e., gold silicide vs metallic Au) can be obtained from the XPS spectra. Together, these results can be used to resolve the existing controversies about the formation and location of gold silicide in the growth stage near the critical thickness region.

■ EXPERIMENTAL DETAILS

The experiments were performed in a five-chamber ultrahigh vacuum system (with a base pressure better than 5 × 10$^{-11}$ mbar), which was equipped with an X-ray photoelectron spectrometer and a variable-temperature scanning tunneling microscope (Omicron Nanotechnology, Inc.).21 The 7×7 reconstruction of an n-type Si(111) sample (2 × 11 mm2, 0.3 mm thick, and 0.005 Ω cm resistivity) was obtained by passing a direct current to flash-anneal the sample to ∼1200 °C for 10 s, followed by slow cooling to room temperature. This procedure produced large terraces of 7×7 reconstruction, as observed with STM. The clean 7×7 substrate was then transferred into a molecular beam epitaxy growth chamber, in which Au (99.9999% purity) was deposited by thermal evaporation at 1040 °C with the 7×7 substrate held at room temperature. Different doses of Au were exposed onto the 7×7

Figure 1. STM filled-state images of (a) 0.004, (b) 0.05, (c) 0.20, (d) 0.76, (e) 1.14, (f) 1.53, (g) 1.80, (h) 2.40, and (i) 3.97 ML of Au on Si(111)7×7 at room temperature, all collected with a sample bias of −2.0 V and a tunneling current of 0.2 nA. The fields of view for a−c and d−i are 50 × 50 nm2 and 100 × 100 nm2, respectively. The faulted and unfaulted half unit cells are marked by F and U, respectively, in panel a. Insets in panels a and d show the Fourier transforms of the respective images, in which the 1/7th fractional spots corresponding to the periodic (7×7) reconstruction are clearly evident.
surface, and each exposure was performed onto a freshly cleaned 7x7 surface as described above. After each exposure, both STM and XPS measurements were performed on the same sample in the analysis chamber. STM experiments were conducted with a constant tunneling current mode using an atomically sharp W tip obtained by electrochemical etching. For XPS, Si 2p and Au 4f spectra were recorded with an overall energy resolution of 0.7 eV fwhm (for the Ag 3d_{5/2} photoline at 368.3 eV) using monochromatized Al Kα X-ray (1486.7 eV) and an analyzer pass energy of 20 eV. The Au coverage was given in monolayers (ML), for which 1 ML corresponds to 7.83 × 10¹⁴ atoms/cm² assuming the Si atomic density of an unreconstructed Si(111) surface. The calibration of Au coverage was carried out using the following procedure: (1) count the numbers of Au adatoms in the STM images where only single Au adatoms and dimers exist (i.e., those obtained at very low Au coverages, e.g., Figure 1a); (2) measure the corresponding Au 4f XPS spectrum of the same sample; (3) establish a relation between the Au surface number density (using the Si atomic density of an unreconstructed Si(111) surface) and the Au 4f peak area; and (4) use this relation to calculate the Au coverages for other samples using their respective Au 4f peak areas. This procedure allowed us to correlate the chemical state information obtained from XPS for a specific coverage with the corresponding morphology information provided by STM.

RESULTS AND DISCUSSION

Figure 1 presents the STM filled-state images for various Au coverages from 0.004 to 3.97 ML on Si(111)7x7 at room temperature. At the lowest Au coverage (0.004 ML, with a magnified image shown in Supporting Information, Figure S1), there are three notable features: sextets, triads, and scribbles. Briefly, the sextets (Figure 1a, circle) and the triads (Figure 1a, square), located respectively on the faulted (marked by F in Figure 1a) and unfaulted (marked by U in Figure 1a) half unit cells (HUCs), correspond to a single Au adatom rapidly moving among the six Si adatom sites within the respective HUCs. Closer examination of the sextet features shows that the Au atom in the center of the sextet protrusions appears brighter than the corner-Au atom, indicating the higher local density of states at the center-adatom sites than the corner-adatom sites. Similarly, in the unfaulted HUC the center-adatom protrusions forming the triangle are brighter than the corner-adatom protrusions, as a result of a higher Au density of states at the center-adatom sites. The scribble feature (Figure 1a, up triangle) results from a fast moving Au dimer within a HUC. In the Au coverage to 0.05 ML, leads to formation of new triangular clusters with 3-fold symmetry (Figure 1b, down triangle) located at the centers of the HUCs. We hypothesize that these triangle features correspond to Au₅Si₂ clusters, including, e.g., Au₄Si₃ in accord with our large-scale calculations based on the density functional theory (DFT) (Supporting Information). At 0.20 ML (Figure 1c), larger clusters appear within the HUCs. The corresponding empty-state image (Supporting Information, Figure S2) shows that these larger distorted triangle features have not covered the Si dimer walls. It should be noted that at this low coverage the 7x7 reconstruction remains clearly visible, with the dimer rows and corner holes unambiguously defining the registry of the original 7x7 surface.

Further increase in the Au coverage leads to larger clusters that completely fill the HUCs, some of which start to connect with clusters in neighboring HUCs. At 0.76 ML, the continued increase in size of these clusters and the merging of adjacent clusters eventually produce a complete Au layer with a honeycomb pattern that fills the entire Si(111)7x7 surface template with just the empty corner holes exposed. As demonstrated by the persistence of the 7x7 and related spots in the fast Fourier transform of the STM image (cf., inset of Figures 1d and 1a), this two-dimensional honeycomb nano-network evidently follows the registry of the underlying 7x7 unit cell template. Indeed, the sharp spots in the fast Fourier transform of the honeycomb nanonetwork indicate its remarkably high degree of ordering. Si atoms in the third layer (i.e., the layer containing the corner hole) remain intact, preserving the otherwise disrupted 7x7 unit cell. Further Au exposure leads to growth of the second layer on the honeycomb nanonetwork (Figure 1e), at which Au atoms accumulate either on top of the existing Au clusters in the first layer or above the empty corner holes, as more and more Au atoms escape the confines of the underlying 7x7 HUCs. At higher coverage, the Au atoms continue to grow into patches of similar height, without any registry to the 7x7 unit cell. At 1.53 ML, patch growth continues and these Au patches evidently become larger and cover up any trace of the first-layer honeycomb clusters and corner holes (Figure 1f). Since Au still exists as gold silicide at this coverage (discussed below), this suggests that the Si atoms in the third layer (i.e., the corner hole layer) of the reconstruction are involved in the reaction of Au and Si atoms, with Au atoms covering displaced Si center adatoms (Supporting Information, Figure S3). With further increase in the coverage to 1.80 ML (Figure 1g), the patches in the second Au layer join with one another and nearly cover the entire first Au layer. These STM images therefore show that the first two Au layers appear continuous and display a wetting property on the 7x7 surface.

As the coverage increases to 2.40 ML (Figure 1h), individual three-dimensional islands as large as ~7.0 nm start to grow on the second layer. The replacement of layer-by-layer growth to island growth indicates a Stranski-Krstanov growth mechanism. The critical layer thickness, often used to mark the transition from layer-by-layer to island growth mode, depends on the strain and chemical potential of the deposited film. For the present Au/Si(111)7x7 case, the critical layer thickness is found to be two physical layers equivalent to ~2 ML of Au coverage, which is in excellent agreement with our XPS results (discussed below) and with the Auger electron spectroscopy data reported by Kim et al. With further increase in the coverage to 3.97 ML (Figure 1i), the metallic Au islands eventually exhibit regular triangular and polygon shapes, which indicates that these Au islands are single-crystalline and they prefer to grow along a specific direction (e.g., [111]).

To complement the above STM results on surface morphology during growth with the chemical-state information, we conduct XPS studies and show in Figure 2a the corresponding Au 4f spectra for the respective Au coverages shown in Figure 1. Evidently, the spectra are dominated by a prominent Au 4f_{7/2} (4f_{5/2}) feature near 84.6 eV (88.3 eV) over the entire coverage range. Above 2.90 ML, a second Au 4f_{7/2} (4f_{5/2}) feature emerges at 83.8 eV (87.4 eV) and appears to strengthen with increasing coverage. The primary and secondary features at their respective higher and lower binding energies are attributed to the gold silicide (Au,Si for short) and metallic Au, respectively. This is in excellent accord with our earlier work on Au nanoparticles on Si(100), which shows that the binding energy of Au 4f_{7/2} for gold silicide is 0.9 eV.
Au transformed to a new two-dimensional honeycomb phase of coverage, the original Si(111)7 to the honeycomb nanonetwork shown in Figure 1d. At this Au component start at a coverage of 0.76 ML, which corresponds coordination of Au with Si before completing the component to lower binding energy could be due to the higher Si). The relative intensities of Au 4f7/2 peaks for the Au metallic Au 4f7/2 components (and their sum), along with that mark the Au 4f peak positions for the gold silicide (Au9Si3 structure as a possible nucleation center for one of the two-dimensional phase, completely blanketing the Si(111)7x7 surface has, in e−/Å2, been the transformation of substrate Si 2p3/2 intensity shown in Figure 1d. At this Au coverage, the original Si(111)7x7 surface has, in effect, been transformed to a new two-dimensional honeycomb phase of AuSi component, which is not only structurally different (honeycomb vs 7x7) but also chemically different (AuSi vs Si). The relative intensities of Au 4f7/2 peaks for the AuSi and metallic Au 4f7/2 components (and their sum), along with that of the Si 2p3/2 Peak, are plotted as functions of Au coverage in Figure 2b.

By combining the information provided by the STM images and XPS spectra, we obtain a more complete picture of Au growth on Si(111)7x7 near the critical thickness region. We summarize the growth evolution of Au on Si(111)7x7 in a schematic model shown in Figure 3. At very low coverage (0.004−0.05 ML), Au exists as highly mobile, metal-like Au adatoms and dimers shared among the Si adatom sites in the HUCs. As the coverage increases to 0.76 ML, these Au clusters increase in size and begin to merge with neighboring clusters, which consist of both metal-like Au and AuSi adspecies. At 0.76 ML, only the AuSi component is found, and these Au silicide adspecies form a remarkably well-ordered honeycomb two-dimensional phase, completely blanketing the Si(111)7x7 surface template. As most of the further deposited Au atoms are adsorbed on the first AuSi layer and they grow into the second layer, they remain as AuSi. Further increase in the coverage leads to eventual filling of the honeycombs to form a continuous first Au layer and to the growth of a second continuous AuSi layer. To understand the nature of the AuSi in the second layer, we perform large-scale DFT calculations, and the details of this computational work are given in the Supporting Information. For our calculations, we propose a AuSi structure as a possible nucleation center for one of the six segments of the honeycomb unit, with each segment consisting of Au atoms located at three different Si sites (adatom, rest-atom, and pedestal atom sites) as illustrated in Supporting Information, Figure S3. The Au atoms in these segments essentially correspond to the majority of the first gold silicide layer, with some of center-adatom sites exposed. We believe that these unoccupied center-adatom sites are responsible for providing bonding to the Au atoms in the second AuSi layer. Above 2 ML coverage, the deposited Au atoms on top of the two continuous AuSi layers are sufficiently far from any Si atom, leaving them to react only with adjacent Au atoms, which leads to the formation of metallic Au islands. In agreement with the STM imaging is the coverage dependence of substrate Si 2p3/2 intensity shown in Figure 2b. In particular, the Si 2p3/2 intensity decreases exponentially from 0 to 2 ML Au coverage, consistent with the layer-by-layer growth mode. The Si 2p3/2 intensity then decreases at a much slower rate above 2 ML, indicative of the Au island growth. This also supports a critical thickness of 2 ML found for the Stranaski–Krastanov growth. Our model is also consistent with the linear increase in the total Au 4f7/2 intensity with increasing Au coverage because the sampling depth of XPS is sufficiently large to cover the entire AuSi layers and the Au islands (Figure 2b).

CONCLUSION

We have studied the growth evolution of Au on Si(111)7x7 at room temperature under ultrahigh vacuum conditions by using...
both STM and XPS. These combined results are crucial to provide support for the Stranski–Krastanov growth with the critical thickness of 2 ML that marks the formation of two Au$_x$Si$_y$ layers followed by three-dimensional metallic Au island growth. It therefore seems unlikely that a metallic Au layer could form between the Au$_x$Si$_y$ layers and the Si surface, as proposed by Hoshino et al. in their ion scattering study.\(^\text{13}\) In the layer-by-layer growth below 2 ML, Au atoms react with the top three Si layers of the 7x7 reconstruction (Si adatom layer, restatom layer, and layer containing the dimer rows and the corner holes) and form two continuous Au$_x$Si$_y$ layers. Above 2 ML, Au atoms form large individual metallic Au islands. The intricate STM images reveal not only the Stranski–Krastanov growth mode, but also the formation of a Au$_x$Si honeycomb nanonetwork at 0.76 ML. Given the conducting property of growth, it therefore seems unlikely that a metallic Au layer could form between the Au$_x$Si$_y$ layers and the Si surface, as proposed by Hoshino et al. in their ion scattering study.\(^\text{13}\)

Moreover, the Au$_x$Si honeycomb nanonetwork could provide an important passivation layer for device fabrication. Moreover, the Au$_x$Si honeycomb nanonetwork represents a unique nanoscale template of Au hexagonal grids (4 nm wide) and nanopores (~1 nm diameter). Upon functionalization by appropriate biomolecules such as cysteine or thiol-containing compounds, the Au$_x$Si honeycomb pattern also promises an important platform to build new applications for biosensing and molecular traps.

ASSOCIATED CONTENT

Figure S1 and S2 (additional STM images), Figure S3 (DFT results), and description of DFT calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: tong@uwaterloo.ca Tel: 519-888-4567 ext 35826.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

