Electronic Transport in Tin(IV) Oxide Nanocrystalline Films: Two-Medium Transport with Three-Dimensional Variable-Range Hopping Mechanism for the Ultrasmall Nanocrystallite Size Regime

Samad Bazargan, Nina F. Heinig, Jose Fernando Rios, and K. T. Leung*

WATLab and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

ABSTRACT: Homogeneous, nanocrystalline films of tin(IV) oxide with controllable crystallite sizes in the ultrasmall size range of 4–12 nm have been prepared by using a simple method of spin-coating followed by annealing in oxygen at different postannealing temperatures \(T_{\text{anneal}}\). These nanocrystalline films all exhibit a high optical transparency of 90–100\% in the visible region with a band gap of 3.71 ± 0.05–3.87 ± 0.05 eV compared to 3.6 eV for bulk SnO\(_2\), indicating a high carrier density for all the TO films. The films obtained with \(T_{\text{anneal}} \geq 350\) °C, marking the onset of crystallization, are found to be conductive. The ac resistivity is measured as a function of temperature between 50 and 280 K for all the conductive films, and two distinct behaviors are observed between 50 and 90 K (LT) and 120–280 K (HT). The presence of two different media, i.e., the crystalline grains and the charge-depletion layer, can explain the observed resistivity behavior. The excellent fit of a parallel resistor model to the resistivity data for samples obtained with \(T_{\text{anneal}} = 350–700\) °C further validates the presence of the two media, revealing energy barrier heights of 48.0 ± 0.4–60.5 ± 0.4 meV for transport across the grain boundaries. The resistivity behavior in each medium is best described by the three-dimensional variable-range hopping (3D-VRH) model, given its excellent fit to the experimental data. On the basis of the resistivity results as analyzed within this model, we conclude that increasing \(T_{\text{anneal}}\) leads to a reduction in the carrier density as defect density decreases. The 3D-VRH fits to the resistivity in the LT region further reveal that above the onset of exponential growth at \(T_{\text{anneal}} = 500\) °C, a remarkable improvement in the charge transport occurs likely due to the observed enhanced crystallinity. Postannealing at different temperatures, therefore, has a direct effect on the extent of crystallization in the amorphous matrix and the size of the resulting nanocrystallites, both of which affect the defect density and transport channels, and can therefore be used to provide fine control on the resistivity of the nanocrystalline SnO\(_2\) film.

1. INTRODUCTION

Nanocrystalline films of tin(IV) oxide (TO) or tin dioxide, with crystallite sizes below 10 nm are of special interest because of their prominent gas sensing and catalytic properties.\(^1,2\) The charge transport in nanocrystalline TO structures is complex and is different from bulk charge transport in several aspects. In bulk semiconducting TO films, conduction originates from n-type carriers, which have been proposed to be due to oxygen deficiencies, Sn interstitials, crystalline defects,\(^3\) or hydrogen doping.\(^4\) Moreover, different charge trap levels with different activation energies are observed in these films, depending on their synthesis methods. In the case of nanocrystalline films, the small size of the crystallites and their interconnections, as well as any gaseous species adsorbed on their large surface areas can further modify their charge transport properties. In particular, for nanocrystallites smaller than 10 nm, the radius of the nanocrystallite becomes comparable to the Debye length (calculated to be \(~3\) nm for SnO\(_2\) at 250 °C)\(^5\), which corresponds to the approximate size of the charge-depletion layer created by an adsorbed species.\(^6\) The comparable size of the charge depleted region to the size of the nanocrystallite and the significant surface-to-volume ratio in these films can result in drastic changes in the conduction channel and in the charge transport through the nanocrystallites and their interconnections upon exposure to different gas species.\(^1,7\) Depending on the size of the conduction channels relative to the mean free path of the carriers, charge carrier scattering effects can also be induced.\(^8\)

In the present work, we investigate the electronic structure and transport properties of nanocrystalline TO films with crystallites in the 4–12 nm size range. Films with selected crystallite sizes are commonly obtained by first synthesizing nanoparticles in solution phase and then spin-coating the precipitated nanoparticles onto a substrate and are usually treated with postannealing in order to create connection between the nanoparticles.\(^5,9\) However, an elaborate procedure is needed in the solution-phase chemistry to control the size of the nanoparticles, making fabrication of large-area nanocrystalline films with specific crystallite size difficult. In the present study, we prepare nanocrystalline films using a different method of controlling the crystallization of an amorphous TO phase by manipulating the postannealing...
temperature \(T_{\text{anneal}} \). Nanocrystallites with controllable size below 12 nm can be easily obtained by keeping \(T_{\text{anneal}} \) close to the onset of crystallization. This method of fabrication involves fewer steps and is easily scalable and compatible with industrial processes. Optical and electronic transport measurements, in conjunction with extensive structural and compositional characterization, performed on the resulting TO films can provide a better understanding of their electronic properties. In particular, the optical transmittance of TO films with different nanocrystallite sizes and crystalline-to-amorphous phase ratios are measured in order to determine the effect of the amorphous phase and nanocrystallite size on the corresponding band gap energies and electronic structures. Furthermore, the effects of the nanocrystallite size and the presence of amorphous phase on the electrical conductivity are studied by measuring the ac resistivity of the films in the temperature range of 50–280 \(^\circ\)C, which can be understood using the thermal activation and variable range hopping models. Carrying out the electronic transport measurements at low temperature and in high vacuum helps to recover the conduction channels and reduces the adsorption/desorption rate of gases and their effects on the electronic transport. These measurements elucidate the nature of the charge carrier activation and transport through the different possible conduction channels. The information obtained through these measurements is of great interest to the application of these nanocrystalline TO films as gas sensors, catalysts, and transparent conducting active/passive layers.

2. EXPERIMENTAL DETAILS

Our group has recently developed a method of producing smooth, homogeneous nanocrystalline TO films. As illustrated schematically in Figure 1a, a 2 M solution of SnCl\(_4\cdot5\)H\(_2\)O in isopropanol is deposited onto a glass (Corning #0211) or quartz substrate by spin-coating at 1000–1800 rpm, followed by postannealing in a tube furnace at a selected temperature (250–900 \(^\circ\)C) in flowing oxygen. Glass substrate is chosen for synthesizing nanocrystallites with average sizes below 5 nm, where \(T_{\text{anneal}} \) is limited to the annealing point of Corning #0211 glass (550 \(^\circ\)C). However, for studying the effect of increasing the nanocrystallite sizes to 12 nm (obtained with a higher \(T_{\text{anneal}} \)) on the optical and transport properties, quartz substrate is used for \(T_{\text{anneal}} \approx 600 \) and 700 \(^\circ\)C. It should be noted that the TO films deposited on quartz for \(T_{\text{anneal}} < 550 \) \(^\circ\)C show chemical and crystalline features similar to those obtained on the glass substrates. The TO films so obtained are found to be generally smooth with a granular morphology with a thickness of 270 ± 50 nm (Figure 1c–f). The thickness can be further controlled by changing the concentration of the precursor solution, and the reported variance of 50 nm is an estimate of the observed differences in the thickness of the deposited layer in several separate depositions. X-ray diffraction (XRD) studies on the TO films obtained with \(T_{\text{anneal}} = 200–700 \) \(^\circ\)C are performed by using a PANalytical MRD X'pert Pro XRD system in the glancing-incidence mode with an incidence angle of 0.3\(^\circ\). Surface morphology and the local crystalline structures of the films are examined by using a LEO FESEM 1530 scanning electron microscope (SEM) and a Zeiss Orion Plus helium ion microscope (HIM), and a JEOL 2010F transmission electron microscope (TEM) operating at 200 kV, respectively. UV–visible transmission spectra for TO films are recorded by using a PerkinElmer Lambda 35 UV–vis spectrometer equipped with a Labsphere integrating sphere. Details of the preparation and characterization of these TO films have been discussed elsewhere.

The ac conductivity of these nanocrystalline films is measured as a function of temperature by a four-point probe method. With the TO film covering the entire substrate (20 × 20 mm\(^2\)), four gold stripes (each 0.8 mm wide) are deposited as voltage/current contacts 2 mm apart on the TO film, and they are connected to the measurement wires using silver paste (Figure 1b). After curing the silver paste by illumination under an incandescent light for 12 h, the sample is then transferred to a cryopump station and evacuated to an initial vacuum of 1 × 10\(^{-5}\) mbar. To decrease the amount of adsorbed gases on the surface in order to reduce their effect on the resistivity, as known to occur for TO films, \(^1\) and to recover the conduction channels, all the samples are retained in vacuum for at least 24 h before measurement. A Stanford Research Systems 510 lock-in amplifier with a 1 Hz internal oscillator source operating at 1 V through a 10 M\(\Omega\) current-limiting resistor is used to measure the ac resistivity of the samples. The ac results are also compared with dc resistivity data taken at 1 \(\mu\)A with a monitored constant current source in order to ensure the reproducibility of the observed temperature behavior of the ac resistivity.
Figure 3. UV–visible spectra of the SnO2 films prepared with different postannealing temperatures (a) of 350–500 °C on glass and (b) of 550–700 °C on quartz substrates. Insets show the (αhv)2 versus hv plots illustrating the method of estimating the band gap.

3. RESULTS AND DISCUSSION

In our previous work, we demonstrated that the size of the nanocrystallites in a thin spin-coated TO film (270 ± 50 nm thick) can be easily controlled over the 4–25 nm size range by manipulating T_{anneal}. In particular, XRD studies of TO films obtained at different T_{anneal} show an onset of crystallization at 350 °C (Figure 2). The corresponding crystallite sizes are estimated by applying the Debye–Scherrer analysis to the broadening of the (110) peak and are found to be in good agreement with the average nanocrystallite sizes estimated from TEM measurement (shown in Figure 2, inset a–c). The effective strain of the nanocrystallites is also estimated from the broadening of the (110), (101), and (200) peaks by using the Williamson–Hall plot, where B is the total broadening after correcting for the instrumental broadening (0.40°), θ is the peak position in radian, λ is the X-ray wavelength, K is the shape factor (0.89 for spherical grains), D is the crystallite size, and ϵ is the effective strain. Both the XRD and TEM results confirm the presence of a single SnO2 phase in these TO films. As shown in Figure 2, inset d, the nanocrystallite size remains in the 4–5 nm range for $T_{\text{anneal}} = 350–500$ °C, which is likely due to the presence of strain on the particles from the amorphous phase limiting the growth of crystallites beyond this size limit. For $T_{\text{anneal}} > 500$ °C, the nanocrystalline strain starts to decrease rapidly, and the resulting exponential increase in nanocrystallite size with increasing temperature suggests an Arrhenius-like growth mechanism.

Figure 3 shows the UV–visible transmission spectra of the TO films obtained with $T_{\text{anneal}} = 350–500$ °C on glass and with $T_{\text{anneal}} = 550–700$ °C on quartz substrates. Evidently, these films all exhibit a high optical transparency of 90–100% in the visible region (1.2–3.5 eV). The absorption edges for films obtained with T_{anneal} at and below 500 °C are found to be very close to that of the glass substrate (Figure 3a), while those obtained with T_{anneal} above 500 °C show a distinctly different absorption edge from the quartz substrate (Figure 3b). From the absorption coefficient given by the Beer–Lambert law, $\alpha = \ln(I)/d$, where I is the transmittance, and d is the optical path length, we calculate the band gap E_g using the Tauc equation for absorption in a direct-band gap material: $\alpha h\nu = A(h\nu - E_g)^{1/2}$, where A is a constant, and $h\nu$ is the incident photon energy. Inset of Figure 3 show the corresponding plots of $(\alpha h\nu)^2$ versus $h\nu$ for the TO films obtained on the glass and quartz substrates in which the zero-crossing of the tangent to the curve provides an estimate of the band gap of the respective sample. The band gap values so determined for all the TO films on glass are clearly different from the estimated band gap value of 4.07 ± 0.05 eV for the glass substrate. This difference is not due to scattering from the additional TO films because the samples exhibit essentially the same high transmittance in the visible region as the pristine glass substrate. The estimated band gap values for the TO films obtained with $T_{\text{anneal}} = 350–500$ °C are found to be 3.83 ± 0.05–3.87 ± 0.05 eV, indicating that these crystalline samples obtained with $T_{\text{anneal}} = 350–500$ °C (Figure 2, inset d) have similar energy band structures. Crystallization of the samples at 350–500 °C, therefore, has not led to any detectable change in the band structure. The band gap values estimated for samples obtained on quartz with higher T_{anneal} of 550, 600, and 700 °C are 3.90 ± 0.05, 3.78 ± 0.05, and 3.71 ± 0.05 eV, respectively. It should be noted that the band gap value for TO film obtained with $T_{\text{anneal}} = 550$ °C on quartz (Figure 3b) is essentially the same as those obtained with $T_{\text{anneal}} = 350–500$ °C on glass (Figure 3a). For the TO films deposited on quartz, their band gap values follow a discernible decreasing trend with increasing T_{anneal} above 550 °C (Figure 3b, inset). Furthermore, the estimated band gap values for all the TO films (obtained with $T_{\text{anneal}} = 350–700$ °C) are found to be
higher than the reported value for single-crystalline SnO$_2$ (3.6 eV).7,16 The conduction band in the electronic structure of TO is composed of the 5s orbitals of Sn and has a strongly dispersive s-type shape.7,17 The observed blue shift in the band gap can, therefore, be explained by the Moss–Burstein effect, where increased n-doping due to a large number of defects in the crystal fills more conduction band states, leading to an increase in the measured optical band gap. Similar blue shifts have also been found for In$_2$O$_3$, ZnO, CdO, and other transparent conducting oxides.7,18

Our optical transmission measurement, therefore, indicates that even the nanocrystalline films obtained with a high T_{anneal} (550–700 °C) that show a high degree of crystallinity still have a high carrier density.

The ac resistivity results for TO films obtained with $T_{\text{anneal}} = 350–700$ °C in the temperature range of 50–280 K are shown in Figure 4. In order to check the reproducibility of the observed resistivity behavior with temperature, dc measurement is also performed on the films obtained with $T_{\text{anneal}} = 400, 450,$ and 600 °C. The similar dc resistivity behavior so observed confirms the ac resistivity result. In spite of our best effort to decrease the gas exchange rates on the surface of the samples by keeping the samples in vacuum for at least 24 h before the measurement, the repeated cooling and heating cycles in between our resistivity measurements could still cause a general variation of 40 Ω·cm in the room-temperature resistivity values. This behavior is due to the small size of the crystalline grains and the high sensitivity of these highly resistive pristine films to the amount of adsorbed gases, which lead to the exceptional gas sensing properties of SnO$_2$.

Similar variation in resistivity due to gas adsorption has also been reported to occur for TO films.11,19,20 In order to better present the changes in the resistivity behavior for all the samples, the resistivity curves plotted in Figure 4 are normalized to the resistivity value at 280 K of the sample obtained with $T_{\text{anneal}} = 350$ °C (8.5 Ω·cm).

Table 1.a

<table>
<thead>
<tr>
<th>T_{anneal} (°C)</th>
<th>ρ at 280 K (Ω·cm)</th>
<th>HT/LT regions (K)</th>
<th>E_a^0 (meV) [R2]</th>
<th>$E_{a^0}^{SE}$ (meV) [adj. R2]</th>
<th>T_S (K) [R2]</th>
<th>T_G (K) [R2]</th>
<th>T_0 (K) [R2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>8.5</td>
<td>296–114/92–51</td>
<td>14.6 ± 0.1 [0.9591]</td>
<td>50.4 ± 0.3</td>
<td>643 [0.9799]</td>
<td>4.1 × 104 [0.9852]</td>
<td>3.6 × 104 [0.9876]</td>
</tr>
<tr>
<td>400</td>
<td>4.0</td>
<td>297–116/115–54</td>
<td>35.0 ± 0.1 [0.9804]</td>
<td>60.6 ± 0.3</td>
<td>3.6 × 104 [0.9936]</td>
<td>5.5 × 104 [0.9964]</td>
<td>1.2 × 106 [0.9975]</td>
</tr>
<tr>
<td>450</td>
<td>51.6</td>
<td>296–131/94–49</td>
<td>7.7 ± 0.1 [0.9713]</td>
<td>6.12 ± 0.03</td>
<td>419 [0.9851]</td>
<td>3.3 × 105 [0.9887]</td>
<td>3.6 × 105 [0.9903]</td>
</tr>
<tr>
<td>500</td>
<td>28.9</td>
<td>288–111/89–70</td>
<td>34.5 ± 0.2 [0.9685]</td>
<td>48.1 ± 0.4</td>
<td>3.2 × 105 [0.9791]</td>
<td>4.8 × 105 [0.9854]</td>
<td>1.0 × 107 [0.9882]</td>
</tr>
<tr>
<td>600</td>
<td>2.6</td>
<td>299–121/84–31</td>
<td>28.4 ± 0.1 [0.9802]</td>
<td>56.1 ± 0.3</td>
<td>2.3 × 105 [0.9934]</td>
<td>2.7 × 105 [0.9962]</td>
<td>4.5 × 105 [0.9973]</td>
</tr>
<tr>
<td>700</td>
<td>9.9</td>
<td>296–124/88–28</td>
<td>41.6 ± 0.1 [0.9898]</td>
<td>61.0 ± 0.4</td>
<td>4.6 × 105 [0.9946]</td>
<td>7.7 × 105 [0.9971]</td>
<td>1.8 × 107 [0.9980]</td>
</tr>
</tbody>
</table>

a Room-temperature resistivity (ρ at 280 K) for TO films obtained with different postannealing temperatures (T_{anneal}); activation energies in the thermal activation model: E_a^0 obtained by fitting the data in the high-temperature (HT) and low-temperature (LT) regions separately, and $E_{a^0}^{SE}$ obtained by fitting the data over the full temperature range using the parallel resistor model (eq 3); and T_S values in the variable-range hopping models obtained by fitting the resistivity data in the specified HT and LT regions. The coefficients of determination, R2, are given in square parentheses (For $E_{a^0}^{SE}$ values of the two-medium model, adjusted R2 values are listed).
the thermal activation and variable-range hopping (VRH) mechanisms, both of which have been extensively used to describe the transport in semiconducting nanostructures including CdSe nanocrystals,24 belt-shaped monocrystals26 and nanowires25 of SnO2, and thin films of In2O3.24 In the thermal activation model, the resistivity, \(\rho \), is given as a function of temperature, \(T \), by

\[
\rho(T) = \rho_0 \exp\left(\frac{E_a}{k_B T}\right)
\]

where \(E_a \) is the activation energy of carriers, \(k_B \) is the Boltzmann constant, and \(\rho_0 \) is the pre-exponential factor. The corresponding relationship used for the VRH mechanisms is

\[
\rho(T) = \rho_0 \exp\left[\left(\frac{T_0}{T}\right)^{1/n} + 1\right]
\]

where \(n = 1, 2, \) and \(3 \) for the Efros–Shklovskii or Coulomb Gap (CG), two-dimensional (2D), and three-dimensional (3D) transport models, respectively, and \(\rho_0 \) is the pre-exponential factor. The \(T_0 \) parameter is related to the density of states at the Fermi level, \(g_0 \), and the carrier localization length, \(a \), by \(T_0 = \beta_{CG}\sqrt{g_0 a} \), \(\beta_{2D} = \sqrt{g_0 a} \), and \(\beta_{3D} = \sqrt{g_0 a^3} \) for CG, 2D, and 3D-VRH models, respectively, where \(\kappa \) is the dielectric constant, and \(\beta \) is obtained from Monte Carlo simulation (with \(\beta_{CG} = 2.8, \beta_{2D} = 13.8, \) and \(\beta_{3D} = 21.2 \)).25 The results for \(E_a \) and \(T_0 \) obtained by fitting the resistivity data in the LT and HT regions for the samples obtained with different \(T_{anneal} \) are presented in Table 1. The near-unity values for the coefficient of determination, \(R^2 \), obtained for these models indicate that the experimental data can be interpreted satisfactorily in both the thermal activation and VRH models. However, the 3D-VRH model gives the best fit to the data, suggesting that the electronic transport in these films is best described in terms of three-dimensional carrier hopping. This, therefore, shows that conduction is not restricted to lower dimensions, in contrast to that reported for films less than 100 nm thick,26,27 because of the three-dimensional conduction network of nanocrystallites distributed in the entire thickness of the thicker (270 ± 50 nm) TO film (Figure 1d).10

The observed decrease in the tangential slope of the resistivity curve in going from the HT to LT region and the complex behavior in the intermediate region (90–120 K) can be explained by considering a two-medium resistance network model schematically shown in Figure 5a. Because of the presence of chemisorbed oxygen, a charge-depletion layer forms around the surfaces of and in the grain boundaries between the nanocrystallites. This layer also extends over the interconnecting neck when the nanocrystalline grain size is comparable to twice the Debye length,28 resulting in a potential barrier (\(\phi_{bc} \)) for electronic transport through the grains (i.e., across the grain boundaries). Although the carrier concentration in the charge-depletion layer is lower than that in the grain by an exponential factor of \(\exp(-\phi_{bc}/(k_B T)) \), charge transport across this layer could still contribute to the conductivity of these highly resistive nanocrystalline TO films especially for \(T < 100 \) K, i.e., in the LT region (Figure 4). In the thermal activation model, two \(E_a \) values are found for the films obtained with \(T_{anneal} = 350–700 \) °C, by fitting their corresponding resistivity data in the HT and LT regions. The values so obtained for the LT region (0.43 ± 0.01–7.7 ± 0.1 meV) are considerably lower than those obtained in the HT region (14.6 ± 0.1–41.6 ± 0.1 meV) (Table 1). The difference in the \(E_a \) values observed in the HT and LT regions supports the presence of a potential barrier for transport across the grain boundaries, which becomes apparent in the HT region but not in the LT region. Electronic transport in inhomogeneous medium can be modeled by considering the appropriate series and/or parallel contributions of each region to the collective behavior, as discussed by Orton et al.28 in interpreting the Hall effect results in various materials. In order to demonstrate that the two-medium model can account for the observed resistivity behavior of the TO films, we adopt a parallel resistor model as equivalent circuit for this two-medium structure, where the predominant resistivity in the HT region associated with transport through the grains and across the grain boundaries is represented by \(\rho_{HT} \), and the predominant resistivity in the LT region related to transport through the charge-depletion layer is denoted by \(\rho_{LT} \). The total resistivity of two parallel resistors (\(\rho_{LT} \) and \(\rho_{HT} \)) is given by

\[
\rho_{\text{total}} = \frac{\rho_{HT}\rho_{LT}}{\rho_{HT} + \rho_{LT}}
\]

As an example, we compare in Figure 5b two calculated resistivity curves to the experimental resistivity curve for the sample obtained with \(T_{anneal} = 700 \) °C, which is chosen because it exhibits a more dramatic difference in the \(E_a \) values and is, therefore, easier to discern the quality of fit (Table 1). By using the resistivity values obtained by fitting the data in the LT (\(\rho_{LT} \)) and HT regions (\(\rho_{HT} \)) independently, we calculate the corresponding \(\rho_{\text{total}} \) according to eq 3. Although this independent parallel resistor model gives qualitative agreement in the higher HT and lower LT regions and in providing a parallel trend with the experimental curve, there is obvious discrepancy. To correct for the discrepancy, which clearly originates from assuming the
independent resistivity behaviors in the LT and HT regions, we recalculate the total resistivity ρ_{total} by fitting the data over the entire temperature range (280–50 K) iteratively with eq 3 to generate new $\rho^\text{SE}_{\text{total}}$ and $\rho^\text{PE}_{\text{total}}$ with their corresponding E_a values as semiempirical (SE) fitting parameters. Evidently, excellent agreement between the calculated $\rho^\text{SE}_{\text{total}}$ vs E_a values for the stepwise fitting in the experimental data is obtained, despite the deviations introduced by the complex resistivity behavior in the intermediate region in the fitting process (Figure 5b). These calculations validate our hypothesis of two-medium electronic transport in the TO films.

The optimized E_a values obtained for the calculated $\rho^\text{SE}_{\text{total}}$ curves for all the TO films are given in Table 1 and plotted as a function of T_{anneal} in Figure 5c. The E_a values for the electronic transport dominant in the HT and LT regions are found to be $48.1 \pm 0.4 - 61.0 \pm 0.4$ meV and $0.1 \pm 0.08 - 6.12 \pm 0.03$ meV, respectively. The difference between the E_a values for transport through the grains and through the grain boundaries, ρ_{GD}, and that through the charge-depletion layer, ρ_{DL}, for each sample corresponds to the potential barrier. The small variations in the E_a difference ($48.0 \pm 0.4 - 60.5 \pm 0.4$ meV) suggest a potential barrier of similar magnitude for all the TO films regardless of the different T_{anneal} employed. Such a potential barrier could be due to similar gas adsorption densities in the nano-regions in all the TO films, which suggests that the neck sizes remain smaller than twice the Debye length in spite of the increase in the nanocrystallite size from 4 to 12 nm. The variation in the resistivity in the intermediate temperature region (90–120 K) can be explained by the presence of potential barriers with different heights due to the statistical distribution in the neck size. The statistical variation in the potential barrier height would lead to different onset temperatures for blocking the conduction channels at various grain boundaries, and electronic transport would continue through the remaining conduction routes as long as the low percolation limit has not reached. These changes in the conduction routes could lead to the observed resistivity variation in the intermediate temperature region, where electronic transport through the crystalline grains is nearly comparable to that through the depletion layer.

The fitted results (Table 1) show that electronic transport in each medium follows the 3D-VRH mechanism. Figure 5c shows the corresponding T_0 parameters obtained by fitting the resistivity data in the HT and LT regions (representing transport through the grains and through the depletion layer, respectively) for the TO films prepared with different T_{anneal}. The T_0 value of 3.6×10^4 K for the sample obtained with $T_{\text{anneal}} = 350$ °C rises sharply to 1.2×10^6 K when T_{anneal} is increased to 400 °C and stays almost unchanged with increasing T_{anneal} above 400 °C (Figure 5c). As T_0 is inversely proportional to the density of states at the Fermi edge ($g(E_F)$) and the carrier localization length (λ), it is not surprising that its value has been reported to vary significantly for different materials, including 1.1×10^3 K for belt-shape monocrystals of SnO$_2$, 4.3×10^2 K for CdSe quantum dots, and 7.7×10^3 K for F-doped thin films of SnO$_2$. In accord with our TEM and XRD results (Figure 2) that show improved crystallinity with increasing T_{anneal}, the carrier localization length does not decrease with increasing T_{anneal}. It can therefore be concluded that the observed increase of nearly 2 orders of magnitude in T_0 with increasing T_{anneal} from 350 to 400 °C in the HT region is due to a sharp decrease in the carrier density at the Fermi edge. This is also in agreement with the results reported by Li et al. which correlate the carrier density at the Fermi edge with the density of oxygen vacancies as one of the common point defects in the crystal structure of TO.

The nearly unchanged T_0 value with further increasing T_{anneal} to 700 °C suggests that the density of states at the Fermi energy is almost constant for samples prepared with postannealing above 400 °C. Moreover, in the LT region, we observe a rise in T_0 value with increasing T_{anneal} from 350 to 400 °C, which can be explained by the high carrier density of the sample obtained with $T_{\text{anneal}} = 350$ °C (similar to that for the HT region). The T_0 value stays fairly stable for samples obtained with $T_{\text{anneal}} = 400–500$ °C and then starts to drop for the sample obtained with $T_{\text{anneal}} = 600$ °C. For the sample obtained with $T_{\text{anneal}} = 700$ °C, this decreasing trend reaches a dramatic reduction of almost four-orders of magnitude in T_0 compared to that obtained for samples with $T_{\text{anneal}} = 400–500$ °C. Since the density of states at the Fermi edge is not increasing, as suggested by the observed red shift in the band gap of the samples obtained with $T_{\text{anneal}} = 600$ and 700 °C according to the optical measurement and also by the TEM and XRD results, this sharp drop in T_0 indicates a correspondingly steep increase in the localization length for the samples obtained with $T_{\text{anneal}} = 600$ and 700 °C. This increase in the localization length suggests that in the Arrhenius growth regime, overcoming the crystalline growth barrier improves the crystallinity of these films, the interconnections among the nanocrystallites, and also drastically reduces the grain boundary scattering effects.

4. CONCLUSIONS

In summary, we study the optical and electronic transport properties of Sn(IV) oxide nanocrystalline films prepared by a simple spin-coating/postannealing method. These TO films are found to consist of nanocrystallites in the 4–12 nm size range in an amorphous-phase matrix. These TO films are highly transparent in the visible region with discernibly larger band gaps of $3.71 \pm 0.05 - 3.87 \pm 0.05$ eV than bulk SnO$_2$, likely due to the Moss–Burstein effect, indicative of the high carrier densities in these TO films. The formation of the nanocrystalline phase above $T_{\text{anneal}} = 350$ °C leads to a conducting film, with two distinct resistivity behaviors between 50 and 90 K (LT), and 120–280 K (HT). The 3D variable-range hopping model provides the best fit to the measured resistivity in the HT and LT regions. The different resistivity behaviors observed in the LT and HT regions can be explained by the two-medium model that takes into account electronic transport through the grains and across the grain boundaries with high carrier densities and through the depletion layer with very low carrier densities. This transport picture is supported by the excellent fit of our experimental data by the parallel resistor model. The energy corresponding to the potential barrier heights so obtained for transport through the grain boundaries for samples with $T_{\text{anneal}} = 350–700$ °C is found to be $48.1 \pm 0.04 - 61.0 \pm 0.4$ meV. Moreover, the variation in the resistivity in the intermediate temperature region (90–120 K) can be explained by the change in the aforementioned conduction routes due to existing distribution in the potential barrier heights between the grains. According to the 3D-VRH model, the observed trend in the T_0 value in the HT region shows that the carrier density in the crystalline grains for the TO film obtained with $T_{\text{anneal}} = 350$ °C is reduced upon increasing T_{anneal} to 400 °C and becomes nearly constant above 400 °C. The decreasing T_0 trend for the LT region shows that increasing T_{anneal} above 500 °C leads to an increase in the localization length of the carriers, indicating a pronounced improvement in the crystallinity, interconnections, and the
conduction channels in the exponential growth regime. These results provide insights to the energy band structure and further elucidate the carrier transport in this network of TO nanocrystallites. These electronic transport properties depend on the nanocrystallite size, which can be effectively controlled by manipulating the postannealing temperature. In addition to the fundamental scientific interest, this information is crucial to potential applications of these nanocrystalline TO films in different areas including gas sensing, catalysis, and transparent conductive oxide materials.

AUTHOR INFORMATION

Corresponding Author
*E-mail: tong@uwaterloo.ca.

ACKNOWLEDGMENT

The present work was supported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

(9) Dave, N.; Pautler, B. G.; Farvid, S. S.; Radovanovic, P. V. Nanotechnology 2010, 21, 134023.